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Many practical applications, such as in blade cascades and turbomachinery, involve
inhomogeneous turbulent shear flows subjected simultaneously to multiple strains. In
principle, the applied strain can be combined to yield an effective strain. However,
no simple stress–strain relation is capable of establishing turbulent stress or energy
balance in the mean or on an instantaneous basis. In the current investigation, a
turbulent boundary layer is examined in the presence of convex curvatures of different
strengths combined with streamwise (favourable and adverse) pressure gradients,
with various values of pressure gradient ratio, (∂P/∂s)/(∂P/∂n). Measurements of
the mean and turbulent parameters and flux Richardson number show appreciable
changes, mainly in the outer portion of the boundary layer (y+ > 100). The turbulent
burst frequency, particularly at the location of application of the additional strain
rate, also changes relative to its value with wall curvature alone.

Three primary observations from these experiments are as follows: (i) in all cases,
the mean velocity profile and all of the measured Reynolds stresses collapse in
the near-wall region using standard inner scaling; (ii) the applied strains combine
nonlinearly, with one of the strains dominating the local flow during its development;
(iii) the ratio of the radial to axial pressure gradient magnitude influences both
classical turbulence correlations and mean flow, as well as the physical production
cycle of turbulence; and (iv) application rate of newly introduced strain rates is at
least as important as their magnitudes.

1. Introduction
Many practical flows of engineering interest are influenced by multiple, interacting

strains. Because of curved surfaces, low-aspect-ratio passages, and streamwise and
spanwise strains, the momentum and heat transfer mechanisms in turbomachinery
are highly complex. In figure 1, a diagram of a typical blade passage section is shown
to point out essential geometrical features, i.e. the surface curvatures, the leading
edge of the blade, and the changes in the cross-sectional area between the blades.
Other complexities are due to endwall effects and rotation. However, even in the
simplest case of a curved wall diffusing passage, the combination of strain rates can
be expected to affect the turbulence in the flow to an extent that requires attention
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Figure 1. Diagram of typical flow passage in turbomachinery.

in design. With the desire to achieve better performance, durability and economy in
turbomachines, it has become increasingly important to understand the fundamental
mechanisms of momentum and heat transfer.

Extra strain rate effects on the structure of a two-dimensional turbulent boundary
layer (TBL) have received considerable attention over the past two decades. A
number of workers have performed experiments to study the influence of additional
rates of strain, e.g. convex and concave curvature (cf. So & Mellor 1973; Gillis &
Johnston 1983; Muck, Hoffman & Bradshaw 1985; Barlow & Johnston 1988a, b), as
well as adverse and favourable streamwise pressure gradients (e.g. Kline et al. 1967;
Narasimha & Sreenivasan 1979; White & Tiederman 1990; Nagano, Tagawa & Tsuji
1991; Fernholz & Warnack 1998).

However, there have been relatively few studies addressed at examining multiple
strain rate interactions in turbulent flows. Consequently, detailed experimental studies
of the initial response and downstream development of a TBL exposed to multiple
strain rates are warranted.

It is well-established that, in the Reynolds-averaged framework, the turbulent shear
stress is not directly affected by mean pressure gradients because no pressure gradient
terms appear explicitly in the Reynolds stress transport equations (Bradshaw 1973,
1994). There is, in fact, no production term in the transport equation for primary
Reynolds shear stress, −uv, due to mean pressure gradient. However, curvature not
only introduces an additional term due to ‘extra strain’, U/R, but affects the main
production term in the turbulent kinetic energy equation through its dramatic effect
on shear stress. The main contribution of the strain rate associated with streamwise
pressure gradient in the turbulent kinetic energy equation is through a ‘normal
stress production’ term, Baskaran, Smits & Joubert (1991). The results of our study
demonstrate that the imposed streamwise strain rate (combined with curvature), and
its rate of application, has a significant effect on turbulence quantities. This suggests
that, in such cases, the Reynolds stress evolution equations give an incomplete
description of the flow. Several alternative formulations have been proposed including:
the rapid distortion theory approach (see Savill 1987), the large eddy interaction model
(LEIM) of Hong & Murthy (1986a) for curved flows, and the structure-based model
of Reynolds & Kassinos (1995) for rotating flows.
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1.1. Effects of single extra strain rates

The effects of longitudinal curvature have been studied extensively over the past few
decades (see the comprehensive literature review by Patel 1997). The early experiments
of So & Mellor (1973) and Gillis & Johnston (1983) found that the primary Reynolds
shear stress was diminished in the outer region of the turbulent boundary layer.
In both studies, a zero streamwise pressure gradient was maintained over most
of the convex wall by carefully contouring the opposite wall, except immediately
downstream of the onset of curvature, where a favourable pressure gradient prevailed
locally. Effects of this locally strong acceleration, and its application rate, on the
turbulence structure were not accounted for in either study.

The applicability of the ‘log-law’ in TBLs with one or more extra rates-of-strain
has been widely discussed. In a comprehensive study by Gibson (1988) on the effects
of surface curvature, it was shown that the logarithmic region existed for the mean
streamwise velocity component, wherein the ‘log-law’ constants could be different
from the standard values (1/0.41 for the slope and 5.0 for the intercept). Gibson
(1988) suggested a value of 5.78 for the intercept, while the von Kármán constant
remained unchanged. A more extensive discussion of this issue can be found in
Schwarz & Plesniak (1996b).

The analogy between streamline curvature and buoyancy in turbulent shear flow
was first discussed by Bradshaw (1969). This analogy between the two phenomena
turned out to be a good first approximation, based on the close correlation between
temperature fluctuations and streamwise velocity component fluctuations. Through
the application of mixing-length calculations based upon meteorological data to
curved shear layers, the predicted effects of streamline curvature were surprisingly
large, e.g. 10% change in mixing length in a boundary layer with δ/R ≈ 1

300
. The

flux Richardson number, Rifl , for curved flows is defined as the ratio of the energy
transfer rate from transverse (wall-normal) velocity fluctuations to the total energy
transfer rate from the mean flow (Townsend 1976)

Rifl =
2uvŪ/r

(uv/r)(∂/∂n)(Ūr)
=

2Srad
1 + Srad

, (1)

where Srad is the strain rate ratio, or curvature parameter, of the mean flow. For a
turbulent flow with convex streamlines, an increase in the flux Richardson number is
associated with an increased stabilization of the TBL. In stratified boundary layers,
considerable changes in the velocity profiles were observed when the flux Richardson
number exceeded 0.05 (Townsend 1976).

Spalart & Shur (1997) and Shur et al. (2000) proposed and evaluated an eddy-
viscosity turbulence model that accounts for system rotation and streamline curvature.
Their proposal of a Galilean-invariant quantity to replace −Ū/r led to an expression
for the Lagrangian derivative of the angle of the strain-rate principal axis, αSR . The
principal axes angles for both the strain-rate tensor, αSR , and the Reynolds tensor,
αReS , for a two-dimensional mean flow can be calculated from:

αSR = 1
2

atan

[ −2Ssn
Snn − Sss

]
, (2)

αReS = − 1
2

atan

[ −2uv

u2 − v2

]
. (3)
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The wall-normal diagonal strain-rate component, Snn, can be determined from the
measurements of the wall-normal velocity, V̄ , whereas the streamwise diagonal strain-
rate component, Sss can be inferred using the continuity equation for the (s, n)-
coordinate system according to

∂Ū

∂s
≈ − ∂

∂n

[
V̄
(

1 +
n

R

)]
. (4)

In this approximation, the spanwise derivative of the z-component of the mean
velocity (W̄ ) is neglected because of the two-dimensional mean flow assumption.

Holloway & Tavoularis (1998) also studied the effects of mild streamline curvature
on anisotropy in sheared turbulence. They proposed a model which requires as
inputs only the specification of turbulence anisotropies in a fully developed rectilinear
reference flow, the geometrical features of the flow under study and a dimensionless
mean eddy lifetime. The primary assumption is that the mean streamline curvature
has no direct effect on the production and dynamics of each individual turbulent
eddy.

The influence of extra strain rates arising from adverse and favourable streamwise
pressure gradients has also been studied extensively. An adverse pressure gradient
can destroy the logarithmic region and significantly change higher-order velocity
moments as reported by Nagano et al. (1991), although it is unclear whether or not
their turbulent boundary layer was in equilibrium. On the other hand, in cases of
equilibrium boundary layers, the validity of the ‘log-law’ was established by White &
Tiederman (1990) and Koskie (1991).

Narayanan & Ramjee (1969) reported that the breakdown of the ‘logarithmic law’
occurred at a value of the pressure gradient parameter ∆P = (ν/(ρu3

τ))(dP/ds) ≈−0.02, where ν is the kinematic viscosity and dP/ds is the streamwise pressure
gradient. This is associated with thickening of the linear sublayer, which occurs
before the relaminarization of the mean velocity profiles and is a first sign of the
onset of the reverse transition process.

In their review article, Narasimha & Sreenivasan (1979) describe the influence of
highly accelerated flows (strong streamwise strain rate) on the mean statistics and
turbulence structures in the boundary layer, especially the tendency of reversion to
laminar flow caused by strong streamwise strain rates. They suggest a two-layer
model, where the turbulence in the outer portion of the boundary layer is rapidly
distorted and the Reynolds shear stress is nearly frozen. During this process, the
viscous region exhibits random oscillations in response to the forcing provided by
the remainder of the original turbulence. In this situation, reversion is a result of the
slowly responding Reynolds stresses to the dominating pressure forces in the outer
region, accompanied by the generation of a new laminar sub-boundary layer which
is stabilized by the strong acceleration.

An adverse pressure gradient not only changes the force balance at the wall, but
also rapidly produces an inflection point in the mean velocity profile. The latter causes
rapid change in the outer-layer turbulence.

The influence of streamwise pressure gradients on near-wall ‘low-speed streaks’ in
turbulent boundary layers has also been studied, cf. Kline et al. (1967). Adverse pres-
sure gradients (APG) make bursting more frequent and violent, whereas favourable
pressure gradients (FPG) reduce the bursting frequency, and, if the TBL is sufficiently
accelerated (k ≈ 3.5× 10−6, where k = (ν/U2

e )(dUe/ds) is the acceleration parameter,
and Ue is the streamwise velocity at the edge of the boundary layer), the bursting
process ceases, leading to reverse transition and relaminarization. Thus, the stream-
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wise pressure gradient can have a profound effect on the structure of the turbulence,
if only indirectly.

1.2. Effects of multiple extra strain rates

Compared to the number of investigations of single extra strain rates, relatively few
experimental studies concerning multiple pressure gradients have been conducted.
In most of them, the individual strengths of the radial or streamwise pressure
gradients were not controllable independently. Baskaran et al. (1987, 1991) studied
the development of a TBL over a curved hill, which included extra strain rates due
to curvature and axial pressure gradient, as well as reversal of curvature. Based on
analysis of the Reynolds stress equations they concluded that the interaction between
curvature and pressure gradient effects would be weak because the curvature affected
primarily the shear stress, whereas the pressure gradient effects appeared mainly
through the production of normal stresses.

The response of a TBL to multiple curvatures (convex and concave) and pressure
gradients (favourable and adverse) was studied by Bandyopadhyay & Ahmed (1993)
in an S-shaped duct. The formation of internal layers was detected at the convex
curvature junctions. According to a criterion given by Baskaran et al. (1987), an
internal layer grows when the curvature parameter ∆k+ = ∆Rν/uτ > 0.373 × 10−4,
where ∆R = (1/R2) − (1/R1), R1 and R2 being the radii of curvature upstream and
downstream of the onset of curvature, respectively. Bandyopadhyay & Ahmed (1993)
also found that the effect of curvature dominates the accompanying sequences of
streamwise pressure gradients. Furthermore, they found an asymmetric response of
the TBL to concave and convex curvatures, i.e. the skin friction in the recovery
region following curvature depended on the sequence of the curvature, concave–
convex compared to convex–concave. No information was provided on Reynolds
shear stresses, very near wall data, nor on the bursting process.

Webster, DeGraaff & Eaton (1996) examined a TBL over a surface bump experi-
mentally, whereas Wu & Squires (1998) performed companion numerical studies using
LES. The initially flat-plate zero-pressure-gradient TBL was subjected to alternating
concave and convex curvature, as well as adverse and favourable pressure gradients.
The surface discontinuity near the leading edge of the bump (concave to convex)
triggered an internal layer, which rapidly grew because of a strong adverse pressure
gradient. On the other hand, it was shown that the effect of convex curvature was
small. Another noteworthy study is that by Chebbi, et al. (1998), in which the response
of uniformly sheared, nearly homogeneous turbulence to changes in curvature was
examined. The principal objective was to determine the rate of adjustment of the
flow structure following stepwise changes in the mean curvature, e.g. transition from
straight to curved section, curvature reversal, and relaxation from curved to straight
section. Although this is not a wall-bounded flow, the results were used by the authors
in the interpretation of curved turbulent boundary-layer data.

Maxey (1982) introduced the concept of an effective strain rate, αeff , and showed that
it is possible to write a transport equation for this quantity assuming homogeneous
turbulence. Using the analogy with energy decay of homogeneous isotropic turbulence

and introducing a large-eddy distortion time scale, TD = L/(δD
√
q2), where L is the

integral length scale, δD is a constant and
√
q2 is the root-mean square (r.m.s.) of the

trace of the Reynolds stress tensor, the following transport equation was obtained:

∂αeff

∂t
=
∂Ū

∂y
+

∂

∂y

(
ED
∂αeff

∂y

)
− αeff

TD
. (5)
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This equation includes a diffusion term which accounts for the transport of effective
strain by the advection of turbulent eddies, where ED is the diffusion coefficient.
However, this approach is applicable only in the case of single imposed strains or
distortions, whereas in the case of a complex flow with multiple interacting strains,
no formal theory yet exists. In addition, it is not clear how the different rates of
application of a newly introduced strain rate affects the momentum transport inside
a TBL.

The concept of total or combined effective strain rates has also been investigated
in the past (cf. Maxey 1982; Sreenivasan 1985). Sreenivasan (1985) suggests that the
turbulence structure at any given stage is completely determined by the local value
of the total strain parameter

βTSt =

∫ TE

0

(
∂Ū

∂y

)
dt, (6)

if the applied mean shear is sufficiently large. Here, TE is the typical lifetime of a large
eddy (also eddy turnover time) which is of the order of 1

3
q2/ε, in equilibrium. Hence,

the large-eddy lifetime can be viewed as the ratio of the turbulent kinetic energy to
the isotropic turbulent dissipation rate. Note that this approach is strictly correct only
for equilibrium flows. Sreenivasan (1985) also proposed that the non-uniqueness of
the structural parameters for different experiments with similar β, for β < 4, suggests
that dβ/dt, i.e. its application rate, may be important in developing flows.

For the two-component data, an estimate for the total strain parameter can be
found by expressing the large-eddy lifetime in terms of measured quantities, i.e.

βTSt,rad ≈ TE,rad ∂Ū
∂y
≈ 1

2

u2 + v2

−uv
1

1− Srad , (7)

respectively, where Srad = (Ū/r)/(∂Ū/∂y) is the curvature strain rate ratio. The total
strain parameter can also be interpreted as the ratio of the large-eddy lifetime to a
distortion time scale. This ratio is a useful measure to determine whether or not the
flow should be treated as a rapidly distorted flow. In rapid distortion theory (RDT),
the governing equations can be linearized under the assumptions that the turbulence
is weak (u′ � U) and that the distortion time is far less than a typical integral
time scale, or in other words, βTSt � 1 (see Savill 1987). Finally, it is important
to note that the addition of a new strain will always have a greater effect on the
turbulence structure than the continuous application of one to which the flow has
already responded (Savill 1987). This is because the total effective strain experienced
by a particular flow structure is limited by the large-eddy lifetime rather than the
total applied strain.

The available information on complex flows with single or multiple interacting
strain rates suggests that turbulence modelling using straightforward RANS will not
be successful. For example the k–ε model is well known not to respond to mean
flow rotation, and for similar reasons does not do well with curvature effects. Full
Reynolds stress models do have terms that account for flow rotation; but the models
for the fast pressure strain term typically do poorly for strong rotation, especially
with added rates of strain (cf. the elliptical streamline work by Blaisdell & Shariff
1996). However, to be certain, we would have to do the calculations with the various
models, including algebraic 1- and 2-equation models. It is expected that LES or
DNS would be required to predict this flow accurately.



Response of turbulent boundary layers to multiple strain rates 339

1.3. Summary and objectives

Despite a number of experimental studies on flows with multiple strain rates, there
still is a lack of detailed, near-wall structural information concerning TBLs that
experience controlled multiple pressure gradients. Few previous studies have addressed
the mechanisms and degree to which multiple strain rates interact with each other
within the turbulent boundary layer. Therefore, it is the primary objective of this
investigation to study the response of a TBL to multiple extra rates-of-strain, i.e.
radial and streamwise pressure gradients. Our brief review points to a number of
unresolved issues requiring further consideration:

(i) Measure near-wall Reynolds stress data down to y+ = 10 when multiple strains
are applied.

(ii) Investigate to what extent the different strain rates interact with each other.
(iii) Investigate whether the boundary layer reaches a state of similarity and exam-

ine its equilibrium.
(iv) Investigate the response of the turbulent boundary layer immediately upstream

and downstream of the onset of newly introduced strains (radial and streamwise).
(v) Investigate the response of bursting and the turbulence production cycle to

multiple strain rates.

2. Experimental facility and techniques
2.1. Water tunnel

In order to investigate the influence of radial and streamwise strain rates on the
turbulent flow field, it is crucial to provide a test environment in which the streamwise
wall curvature and the streamwise variation of the cross-sectional area are carefully
and accurately controllable. Figure 2 depicts the curved portion of the test section,
showing the typical wall shapes used to establish the desired streamwise pressure
distribution on the convex wall (the exact wall shapes are available in Schwarz 1998,
tabulated wall shapes are also available at the Journal of Fluid Mechanics editorial
office and at the web site http://widget.ecn.purdue.edu/∼tfpl/). Two test sections
with different strengths of wall curvature were designed and manufactured to study
the influence of streamline curvature and its interaction with streamwise pressure
gradients.

All the data were acquired in a recirculating water channel facility (figure 3)
driven by four centrifugal pumps each rated at 5.7 × 10−3 m3 s−1 (90 g.p.m.). Two
interchangeable curved test sections were employed to impose moderate and strong
convex curvature. Softened and filtered water entered the straight development sec-
tion through a series of screens, into a smooth two-dimensional contraction section
followed by a honeycomb section to reduce large-scale vortical motions in the en-
trance region. An equilibrium turbulent boundary layer was developed on the smooth
wall of the straight section (2.46 m long for test section 1, and 1.95 m long for test
section 2). All test sections had a spanwise height of 200 mm (z-direction) and the
width (y-direction) of the sections was 100 mm at the boundary-layer trip and ap-
proximately 110 mm at the entrance to the curved test section, s = 0. A flexible wall
(constructed from 3.2 mm thick Lexanr) was placed between the measurement wall
and the opposite sidewall to adjust the cross-sectional area, and hence to impose the
streamwise pressure gradient. The flexible wall was adjusted to yield a zero pressure
gradient (ZPG) in the straight portion and a ZPG, or adverse (APG) or favourable
pressure gradients (FPG) of different strengths in the curved test section. The width
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Figure 2. Diagram of curved test section and wall shapes.

of the test section downstream of the onset of curvature varied for each streamwise
pressure gradient. A region of local acceleration persisted immediately downstream of
the onset of curvature (0 6 s− s0 6 2δ0), owing to the discontinuity in wall curvature,
despite widening of the cross-sectional area in that region. For additional details of
the test section and pressure distribution see Schwarz (1998). For test section 1 (TS1),
the boundary-layer thickness at the exit of the straight test section was δ0 ≈ 40 mm,
resulting in a curvature parameter of δ0/R ≈ 0.10, which comprises a strong curva-
ture. For test section 2 (TS2), the initial boundary-layer thickness was δ0 ≈ 35 mm,
which resulted in a curvature parameter of δ0/R ≈ 0.05 (moderate curvature). Typical
values of the curvature parameters under ZPG conditions for each test section were:
∆k+ = 6.20×10−5 for TS1 and ∆k+ = 3.54×10−5 TS2, using inner variables evaluated
just upstream of the onset of curvature.

2.2. Measurement techniques

Pressure taps installed along the convex wall were used to measure the imposed
streamwise pressure gradients with a Gilmontrmicro-manometer. The manometer
fluid used was carbon tetrachloride (CCl4 with specific gravity = 1.584) allowing the
pressure to be measured within 1 Pa. The pressure tap spacing was varied between
25.4 mm (near the onset of curvature) and 101.6 mm further downstream in the curved
test sections.

A two-component laser-Doppler velocimeter (LDV) system was employed for sim-
ultaneous measurements of the streamwise and wall-normal instantaneous velocity.
The transmitting optics of the two-component, three-beam LDV system consisted of
a Thermo System Incorporated (TSIr) model 9100-8 velocimeter modified to measure
velocity components at ±45◦ to the mean flow direction in TS1. A slightly different
configuration was used for the velocity measurements in TS2, where the three-beam
system was oriented to measure streamwise and wall-normal velocity components
directly. Using a pair of Bragg cells, both monochromatic beams were frequency
shifted at 40 MHz to minimize fringe biasing. Operating in the forward-scattering
mode, near-wall measurements were made possible by inclining the optical axis of
the transmitting side by approximately 3◦ with respect to the measurement wall. The
probe volume was 45 µm in diameter and had a spanwise extent of approximately
920 µm, which corresponded to 2 and 40 viscous units, respectively, when normalized
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Figure 3. Diagram of low-speed water tunnel. TS1: δ0/R = 0.10; TS2: δ0/R = 0.05.

with inner variables, uτ and ν. In order to enhance the spatial coincidence of the two
probe volumes, a 50 µm pinhole was inserted into the receiving optics, which reduced
the effective probe volume length to 12 viscous units. Spatial and temporal measure-
ment coincidence were achieved by carefully aligning the transmitted beams and the
receiving optics, and by setting a coincidence window on the counter processors (TSI
1980B) to ensure that the accepted signal on both channels originated from the same
scattering particle passing through the probe volume (typical coincidence time was
30 µs). The flow was seeded with 0.3 µm diameter fat particles from homogenized
cream at a concentration of approximately 2.5 ml m−3.

In order to calculate reliable statistics (mean and higher-order moments), various
numbers of statistically independent data realizations were required. For the two-
component velocity profiles, a minimum of 10 000 data points were acquired for
each velocity component. Velocity bias, which occurs in LDV measurements of
turbulent flows (see McLaughlin & Tiederman 1973), was minimized using the fixed-
waiting-time sampling method. Typical values for the inhibit time and validation
rate (maintained at least five times in excess of the Kolmogorov frequency) were
approximately 10–15 ms and 2500 Hz, respectively.

The time-resolved measurements, necessary for bursting period analysis, consisted
of 100 000 velocity realizations with the counter processors operating in the single-
point per Doppler-burst mode. In this case, velocity bias was reduced by correcting
the individual velocity measurement using a two-dimensional weighting factor as
suggested by McLaughlin & Tiederman (1973). During these measurements, the
particle arrival rate was maintained in excess of the wall strain rate, which is an
approximation for the viscous frequency of the flow, fvis = ∂Ū/∂y|w = u2

τ/ν, which
for TS1 was typically 1800 Hz for the zero, 2400–2800 Hz for the favourable, and
2700–650 Hz for the adverse streamwise pressure gradient cases. Note that for the
APG case, the effects of convex curvature and pressure gradient oppose each other in
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terms of stabilizing or destabilizing the flow, resulting in a wide range of wall strain
rates. For TS2, the typical values for the viscous frequency were 1600 Hz for ZPG,
and 2900 Hz for the strong FPG case.

2.3. Burst detection

The structure of turbulence in boundary layers has been studied extensively (Robinson
1991). One of the events associated with coherent structures is an ejection, or series
of ejections comprising a turbulent burst. The bursting cycle is the main turbulence
production mechanism (Runstadler, Kline & Reynolds 1963). During an ejection
event, the low-speed fluid near the wall undergoes a rapid acceleration away from
the wall and mixes with the higher-speed fluid above the wall. Consequently, the
ejection process is associated with a positive v-fluctuation (higher than the mean)
and a negative u-fluctuation (lower than the mean). These characteristics led Lu &
Willmarth (1973) to propose the second-quadrant (uv2) burst-detection technique for
an Eulerian velocity probe. This detector triggers on large negative values of the
instantaneous product of the streamwise and wall-normal velocity fluctuations when
they occur in the second quadrant of the uv-plane, i.e.

uv(t) < −Hu′v′, u(t) < 0 or v(t) > 0, (8)

where H is a threshold specified by the user. The fact that a threshold-independent
range exists allows meaningful estimates of the mean time between bursts to be made.
This detection method was chosen over single-component burst-detection methods,
e.g. the VITA (Blackwelder & Kaplan 1976) and modified u-level (Bogard & Tieder-
man 1986) techniques, because the uv2 method is known to give the best correlation
between probe detections and visually observed ejections (Bogard 1982).

It was also necessary to group multiple ejections appropriately, depending on
whether they originated from the same or from different bursts, through the use of a
grouping time, τg . This grouping procedure was developed by Bogard & Tiederman
(1986) and has also been used by other investigators (e.g. Barlow & Johnston 1988b;
Schwarz & Plesniak 1996a). Ideally, a histogram of the time between ejections would
have two separate distributions: one for ejections from the same burst and one for
ejections from different bursts. In practice, there is some overlap between the two
distributions. Ejections separated by τ less than τg are assumed to originate from
the same burst, whereas those with longer separation times originate from different
bursts. The appropriate grouping time for a given threshold can be determined
using the histogram of the time between ejections plotted on a semi-logarithmic
scale (see figure 4a). It is assumed that the distribution of times between ejections
within the same burst and the time between detections from different bursts both
decrease exponentially, yielding two linear regions with a region in between where
the distributions overlap (not necessarily linear). The extrema of the overlap region
are indicated by τ1 and τ2 and the grouping time was chosen at the midpoint of
the overlap region (White & Tiederman 1990). Thus, the ambiguity in τg was half
of the interval between τ1 and τ2. The propagation of this ambiguity is the major
contributor to the uncertainty in the mean burst period T̄B . This grouping procedure
was repeated for 10 different thresholds between 0.0 and 1.6 for each burst record. In
figure 4(b), the burst period is plotted as a function of the detector threshold (H), and
the threshold independent region is clearly evident. The reported time between bursts
(T̄B) is calculated by simply averaging the values within the threshold independent
range.



Response of turbulent boundary layers to multiple strain rates 343

1

0.1

0.01

0.001
0 0.01 0.02 0.03 0.04 0.05

T (s)

(a)

τ1 + τ2

2
τg

 =

τ1

τ2
1–F (T )

50

40

30

20

10
0 0.5 1.0 1.5

H

(b)

TB (ms)

Threshold independent range

Figure 4. (a) Histogram of time between ejections to determine the grouping time.
(b) Time between bursts as a function of detector threshold.

2.4. Uncertainty estimates

The error analysis for all measured quantities was based on the methodology outlined
by Kline & McClintock (1953) and Moffat (1988). A 95% confidence interval for
Gaussian (or nearly Gaussian) distributions was assumed. Calculation of uncertainty
estimates for the LDV data followed the procedure used by Yanta & Smith (1973)
and Walker & Tiederman (1988), and are reported in Schwarz (1998). The main
source of error is the uncertainty in the determination of the beam-crossing angle,
which affects the fringe-spacing calculation. This results in an uncertainty of 0.4%
for the measured velocity component. In addition, the uncertainty in the estimate of
statistical quantities depends on both the ensemble size and the r.m.s. level for a mean
quantity, but solely on the ensemble size for a r.m.s. quantity.

Typical uncertainty bounds for the Reynolds stresses are shown in the upper right-
hand corner of the appropriate figures. Typical uncertainties on the r.m.s. and mean
velocities are of the order of the plot symbol sizes, i.e. less than 1%, except for the
near-wall region (y+ 6 10, where y+ = yuτ/ν is the inner normalized wall-normal
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Quantity y+ ≈ 10 y+ ≈ 100

σŪ ±0.45% ±0.41%
σV̄ ±0.40% ±0.40%
σu′ ±0.68% ±0.68%
σv′ ±0.83% ±0.56%
σuv ±7.15% ±5.26%

Table 1. Summary of measurement uncertainties for 95% confidence interval.

coordinate). For y+ 6 10, the measured wall-normal r.m.s. velocity component was
significantly higher than the direct numerical simulation data by Spalart (1988) and
hence is omitted. (Such an overprediction of the normal velocity fluctuations near
the wall is common to many experimental data sets measured with LDV using
various optics configurations (J. P. Johnston 1995 and R. L. Simpson 1996, personal
communications) and is not fully understood.) The benchmark DNS results for the
wall-normal r.m.s. velocity component exhibited the expected O(y2) behaviour. The
maximum uncertainty on the shear stress was typically 12–13% in the maximum
stress region (y+ ≈ 40–80). Typical values for the relative uncertainties for the mean
and r.m.s. velocity components and for the primary Reynolds shear stress are given
in table 1 for N = 20 000 at y+ ≈ 10 and 100.

Uncertainty in the shear velocity is less than 1% due to the mean streamwise velocity
measurements and approximately 5% due to the additional uncertainty introduced
by the Clauser method, which has been used to infer the wall shear stress. Note that
for flows with curvature and pressure gradient, the constants in the log-law may be
different from the universal flat plate values (Moser & Moin 1987; Gibson 1988). The
uncertainty for the pressure gradient parameter is of the same order as the size of the
corresponding plotting symbols (1.6% for k).

The uncertainties associated with measuring quantities upon which the burst
periods depend are of the order of 1–2%. However, owing to the post-processing
operations, i.e. choice of thresholds, and determining grouping times to discriminate
between ejections originating from the same or different bursts, the ambiguity in the
absolute value of T̄B is typically between 15 and 20%. Thus, although the absolute
magnitudes of burst period are uncertain up to 20%, all of the data sets were pro-
cessed consistently to minimize the ambiguity and the trends exhibited are faithful
to within the measurement uncertainty of 2%. The normalized ejection duration
∆τ+

E = ∆τEu
2
τ/ν was calculated from the individual time-resolved measurements for

each threshold and its uncertainty is approximately ±3.5%.

3. Results and preliminary discussion
3.1. Integral parameters and pressure gradients

In figure 5, the distribution of the pressure gradient in terms of the acceleration
parameter, k = (ν/U2

e )(dUe/ds), is shown for the moderate and strong curvature
cases. All data sets are summarized in table 2. The ZPGU case is the ‘uncorrected’
zero pressure gradient in which the test section walls were parallel. Note the strong
favourable pressure gradient which arises naturally at the straight/curved wall tran-
sition. This was counteracted in the ZPGC case by contouring the opposite wall. One
objective of this study was to establish zero, as well as constant favourable and adverse
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Figure 5. Acceleration parameter distributions along measurement wall for (a) strong and
(b) moderate convex curvature (typical uncertainty on the order of plot symbol size).

pressure gradients of different magnitudes downstream of the onset of curvature. As
shown in figure 5, nearly constant levels of pressure gradient were achieved over a
significant portion of the convex wall (α > 10◦, corresponding to s − s0 ≈ 1.7δ0),
except in the region immediately downstream of the onset of curvature, where a
favourable pressure gradient (FPG) prevailed for a short distance. The flexible wall
opposite to the measurement wall was carefully contoured to minimize this effect in
the initial region of the curved test section. This was a painstakingly difficult iterative
procedure that often took many hours because adjustments to the wall at one lo-
cation change the pressure everywhere. Typical ranges for the acceleration parameter
k, the momentum thickness Reynolds number Reθ , and the pressure gradient ratio
Prat = |∂P/∂s|/(∂P/∂r) were: −0.5 × 10−6 6 k 6 1.8 × 10−6, 3500 6 Reθ 6 10 500,
and 0 6 Prat 6 31.2, respectively.
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Strong curvature (δ/R ≈ 0.10), TS1
Case k × 106 α = 8◦ 15◦ 20◦ 35◦ 45◦ 55◦

ZPGU 0.0 – – ⊗ ⊗ – ⊗
ZPGC 0.0 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
FPGC 0.5 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
SFPGC 1.0 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
APGC −0.5 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Moderate curvature (δ/R ≈ 0.05), TS2
Case k × 106 ∆ s = −5δ0 −1δ0 α = 0◦ 5◦ 10◦ 15◦ 20◦ 30◦

ZPGU 0.0 ⊗ ⊗ ⊗ ∗ ⊗ ⊗ ⊗ ⊗
ZPGC 0.0 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
SFPGC 1.6 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

∗ no time-resolved data

Table 2. Summary of cases investigated
(⊗ indicates time-resolved, two-component velocity records).

z [mm] cf × 103 δ∗ [mm] Upw [m s−1]

−40 2.348 5.08 1.189
−20 2.350 4.81 1.218

0 2.438 4.46 1.214
20 2.551 4.41 1.195
40 2.444 4.98 1.188

Table 3. Spanwise (z-direction) variation of integral parameters at α ≈ 35◦ under ZPG conditions

Spanwise variations of integral parameters were evaluated from single-component
LDV measurements to check the mean two-dimensionality of the flow. Representative
values of the skin-friction, displacement thickness, and potential wall velocity at five
spanwise locations are given in table 3. The flow is reasonably two-dimensional at
this streamwise location (α ≈ 35◦), where the largest variation of ±5.1% occurred for
the skin-friction coefficient. Flow visualization by Richman (1994) did not reveal any
strong secondary flows over the central 50% of the span. Furthermore, the correlation
coefficient was well behaved and showed no evidence of boundary-layer contami-
nation, even for the APG cases with the thickest boundary layer (Schwarz 1998).

The distribution of the local skin-friction coefficient in each test section is shown
in figure 6. Despite the positive shift near the onset of curvature for both test sections
(owing to the locally strong FPG), the skin-friction coefficient is reduced over the
convex wall in the presence of zero pressure gradient (ZPG) in both test sections.
The degree of reduction is greater for the stronger curvature, as expected. On the
other hand, different levels of FPG counteract the reduction caused by the convex
curvature, whereas adverse pressure gradient (APG) augments the reduction of the
skin-friction over the convex wall for TS1. This behaviour is a clear indication for
an interactive process taking place between the two applied extra rates-of-strain.
The same circumstances were observed in the skin-friction distribution measured by
Bandyopadhyay & Ahmed (1993), where the S-shaped duct resulted in asymmetrical
responses between the two walls, clearly implying the interaction of the radial and
streamwise strain rate.
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Figure 6. Distributions of skin-friction coefficient along measurement wall for (a) strong and
(b) moderate convex curvature.

3.2. Strong curvature case

A strong curvature case is considered first (δ0/R ≈ 0.10, where δ0 is the initial
boundary-layer thickness upstream of the onset of curvature and R is the radius of
curvature). Two-component velocity profiles were acquired at different streamwise
locations along the convex wall in the mid-plane of the test section (z = 0 mm) as
the flow was exposed to zero, two different favourable and one adverse streamwise
pressure gradient. The pressure gradient ratio, Prat , in this test section was varied
between 0 for the ZPG and 0.6 for the SFPG case. Mean and higher-order velocity
statistics are presented below to illustrate the downstream development of the TBL
under ZPG conditions and to show the effect of different streamwise pressure gradients
at one fixed streamwise location (α ≈ 35◦) on the turbulence structure of the boundary
layer. All data sets are compared to a ZPG boundary layer over a smooth flat wall
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Figure 7. Mean streamwise velocity profiles for TS1 under compensated zero pressure gradient
conditions (ZPGC) (typical uncertainty of the order of plot symbol size).

with Reθ ≈ 3250 and to the DNS results of Spalart (1988), where Reθ = 1410. The
shear velocity, uτ, has been used for inner variable normalization. It was determined
using the standard Clauser method, although the log-law must be used cautiously in
curved TBLs (cf. Gibson 1988; Schwarz & Plesniak 1996b). In this study, the classical
constants (κ = 0.41 and B = 5.0) were retained to evaluate the shear velocity,
primarily because no direct measurements of the wall shear stress were available and
to facilitate comparison to the vast body of previous work on curved boundary layers
(cf. So & Mellor 1973; Smits et al. 1979; Gillis & Johnston 1983; Muck et al. 1985;
Barlow & Johnston 1988a, b).

In figures 7 and 8, the streamwise development of the mean and fluctuating velocity
and Reynolds shear stress profiles over a strongly curved convex wall with zero
streamwise pressure gradient (ZPG) is shown. As previously reported (e.g. Gillis &
Johnston 1983; Gibson, Verriopoulos & Vlachos 1984), the extent of the logarithmic
region is reduced (30 6 y+ 6 100) owing to the presence of the strong convex
curvature. An explicit relationship for the mean streamwise velocity component as
suggested by Liakopolous (1984) represents the near-wall behaviour throughout the
logarithmic region very well (not plotted), as did the DNS results of Spalart (1988)
(plotted with solid line). Initially, the wake component in the outer portion of the
turbulent boundary layer increases with downstream distance up to α ≈ 45◦. It then
remains constant, implying mean flow similarity. Note that the deviation of the current
flat-plate data from the DNS results in the outer portion of the boundary layer is
due to the different Reynolds numbers of each of these studies.

Similarity for the Reynolds stresses is also achieved by 45◦. The normal components
of the Reynolds stress (streamwise and wall-normal r.m.s. velocities), shown in figures
8(a) and 8(b), collapse throughout the entire boundary layer at every streamwise
location. The primary peak in the streamwise r.m.s. velocity occurred at the same
wall-normal distance (y+ ≈ 15) as for the flat plate case. However, the peak values
were approximately 14% lower than those measured on the flat plate. The increase of
both components relative to the flat plate values in the outer portion of the TBL is
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attributable to a difference in Reynolds number and to boundary-layer contamination
(especially at the last two measurement stations).

In figure 8(c), the primary Reynolds shear stress profiles again exhibit similarity
over the curved wall. There is a dramatic reduction in the primary Reynolds shear
stress outside the logarithmic region with respect to flat-plate values, which has been
reported by other investigators (e.g. So & Mellor 1973; Gillis & Johnston 1983) and
can be attributed to the attenuation of the larger-scale structures in the outer portion
of the boundary layer owing to the strong stabilizing convex curvature, as observed by
Chiwanga & Ramaprian (1993). They showed that the size of the energy-containing
eddies was reduced dramatically for a flow over a convex surface even with moderate
curvature (their curvature parameter was δ0/R ≈ 0.04). The eddies are smaller because
the streamlines near the free stream have a convex curvature and the resulting normal
pressure gradient causes a reduction in the entrainment of the ambient fluid by the
boundary layer.

In figure 9, the mean streamwise velocity profile is shown as a function of the
normalized wall-normal coordinate with zero, favourable and adverse streamwise
pressure gradient at a fixed streamwise location (α ≈ 15◦). This particular streamwise
distance was chosen because it is far enough downstream of the region that is
influenced by a locally strong FPG which arises because of a sudden change in wall
curvature from an infinite radius of curvature (flat plate) to a finite radius. The mean
profiles collapse well throughout the logarithmic region, whereas the wake component
(outer portion of the turbulent boundary layer) is reduced with increasing strength
of FPG, and elevated for APG. Favourable pressure gradient has the tendency to
oppose the wake-enhancing effect of the convex curvature, whereas the APG further
increases the wake component. On the other hand, both convex curvature and FPG
tend to stabilize the turbulence within the boundary layer, whereas APG acts to
destabilize it.

The streamwise and normal r.m.s. velocities, along with the primary Reynolds shear
stress (shown in figure 10) are illustrative of the effects of the imposed extra rates of
strain. The near-wall values (y+ 6 50) of the normal stresses collapse for all cases
except for the APG case. Changes are compensated by changes in uτ when subjected
to multiple strain rates of different magnitude. Hence, inner scaling is successful in the
inner region of the boundary layer when favourable pressure gradients are applied
along with convex curvature. The reduction of the primary peak in the streamwise
r.m.s. velocity relative to the measured flat-plate values occurs in all cases, even in
the presence of APG. Beyond the near-wall region, all Reynolds stress components
for the ZPG and FPG cases are reduced relative to the flat-plate values, except in
the wake region. This reduction was augmented by the FPGs and counteracted by
the APG. Similar effects have been observed in flat-plate turbulent boundary layers
subjected to streamwise pressure gradients (Koskie 1991; Smits, Matheson & Joubert
1983). Note that the wall-normal r.m.s. velocity component remains elevated, relative
to the flat-plate values, throughout the entire boundary layer in the presence of APG
and that the streamwise r.m.s. component is elevated just outside the inner region of
the TBL (y+ > 30). The primary Reynolds shear stress, shown in figure 10(c), exhibits
noteworthy features as well. Beyond the shortened logarithmic region, −uv/u2

τ is
reduced relative to the flat-plate values. This is attributable to the attenuation of
the larger-scale structures in the outer portion of the boundary layer, as discussed
previously. The additional effect of the various streamwise pressure gradients on the
primary Reynolds shear stress is noticeable throughout almost the entire boundary
layer. In general, the FPGs tend to reduce the turbulent shear stress correlation,
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Figure 8(a, b). For caption see facing page.

whereas the APG has the opposite effect. Based on comparisons within the maximum
shear stress region of each additional streamwise strain with the ZPG case, FPG
caused a reduction by 7% and SFPG a reduction by 25%. On the other hand, the
maximum value for the Reynolds shear stress was increased by 40% in the presence
of APG.

3.3. Moderate curvature case

In this section, mean and higher-order velocity statistics are presented for the test
section with moderate curvature (δ0/R ≈ 0.05 and 0 6 Prat 6 1.2) to illustrate
the behaviour of the TBL immediately upstream and downstream of the onset of
curvature under ZPG and SFPG conditions. As in § 3.2, all data sets are normalized
using uτ and compared to a ZPG flat-plate boundary layer with Reθ ≈ 3250 and to
the DNS results of Spalart (1988).
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Figure 9. Mean streamwise velocity profiles for TS1 under different streamwise pressure gradient
conditions at α ≈ 15◦ (uncertainty of the order of plot symbol size). δ0/R ≈ 0.10.

The mean streamwise velocity profiles shown in figure 11 for ZPG at different
streamwise locations, starting 5 boundary-layer thicknesses upstream of the onset of
curvature and extending 10◦ downstream, collapse very well. It is virtually impossible
to distinguish between flat-plate data and the data that were acquired in the curved
test section. Even at the last streamwise location (α ≈ 10◦), the extent of the log-law
region has not been reduced by the action of the convex curvature. Any changes in
the strength of the wake component are minimal.
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Despite the lack of differences in the mean streamwise velocity profiles, there
are some noteworthy variations in the Reynolds stress profiles shown in figure 12.
The fluctuating velocity profiles clearly show a monotonic reduction of both the
streamwise and wall-normal r.m.s. velocities immediately at the onset of curvature
(α ≈ 0◦). Profiles of the primary Reynolds shear stress, shown in figure 12(c), exhibit
even more significant differences between the turbulence upstream and downstream
of the onset of curvature. Beginning at α ≈ 0◦, the peak in −uv+ is reduced relative to
the upstream stations, and this trend continues as the flow develops along the convex
wall. The most significant reduction can be observed outside the near-wall region
(y+ > 70). This behaviour clearly shows that the convex curvature immediately
reduces the turbulent momentum transport in the TBL, yet the mean streamwise
velocity profiles remain unaltered.

In figures 13 and 14, the mean and fluctuating velocity profiles as well as profiles
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Figure 10. Profiles of (a) streamwise and (b) wall-normal r.m.s. velocity (typical uncertainty on the
order of plot symbol size); and (c) primary Reynolds shear stress profiles for TS1 under different
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Figure 11. Mean streamwise velocity profiles for TS2 under zero pressure gradient conditions
ZPGC (typical uncertainty of the order of plot symbol size). δ0/R ≈ 0.05.

of the primary Reynolds shear stress are shown for the same streamwise locations as
above under SFPG conditions. Some remarkable differences (compared to the ZPG
case) can be observed. The wake component of the mean streamwise velocity profile
is suppressed even upstream of the onset of curvature. In contrast to the ZPG data,
these profiles collapse only throughout the log-law region of the boundary layer, but
deviate in the outer layer.

The effect of the applied SFPG on the fluctuating velocity components is similar
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Figure 12(a, b). For caption see facing page.

to that found in the presence of ZPG, as shown in figures 14(a) and 14(b). The
monotonic reduction of both the streamwise and the wall-normal r.m.s. velocity is
more dramatic than before and can be observed to begin upstream of the onset of
curvature. This effect is solely caused by the application of a favourable pressure
gradient. However, it is the onset of curvature itself, combined with the reduction
of the cross-sectional flow area at the onset of curvature that impose the favourable
pressure gradient. The reduction of the primary Reynolds shear stress immediately
downstream of the onset of curvature (figure 14c) is also more pronounced than in
the ZPG case. Note that in the presence of SFPG, the reduction of −uv+ occurs
throughout almost the entire boundary layer (y+ > 15). This striking behaviour
indicates that the largest portion of the turbulent boundary layer is affected when a
strong FPG is applied in combination with moderate convex curvature. Note that the
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Figure 12. Profiles of (a) streamwise and (b) wall-normal r.m.s. velocity (typical uncertainty on
the order of plot symbol size); and (c) primary Reynolds shear stress profiles for TS2 under zero
pressure gradient conditions (ZPGC). δ0/R ≈ 0.05. See figure 11 for key.
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Figure 13. Mean streamwise velocity profiles for TS2 under strong favourable pressure gradient
conditions SFPGC (typical uncertainty of the order of plot symbol size). δ0/R ≈ 0.05.

pressure gradient ratio in this case is twice as large as that for the strong curvature
case combined with SFPG.

These results clearly demonstrate that the turbulence is immediately affected by
the imposed extra strain rates, i.e. radial and streamwise pressure gradients. Even
in the absence of the strong favourable pressure gradient, the measured Reynolds
normal and shear stresses were reduced at the start of curvature. This trend was
amplified as an SFPG was imposed along with convex curvature. This behaviour is
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not unexpected, since both extra strain rates tend to stabilize the turbulence within
the boundary layer.

4. Further discussion
In this section, we will first examine whether the boundary layer reaches a new

state of equilibrium some distance after the extra strain rates are introduced. This is
an important consideration, since common turbulence models (e.g. k–ε two-equation
model) require local equilibrium conditions. In the following subsections, the effect
of different values of the pressure gradient ratio, Prat = (∂P/∂s)/(∂P/∂n) on the
turbulence will be investigated. Representative production terms of the Reynolds
stress tensor, as well as profiles of the flux Richardson number, are presented. Finally,
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Figure 14. Profiles of (a) streamwise and (b) wall-normal r.m.s. velocity (typical uncertainty of the
order of plot symbol size); and (c) primary Reynolds shear stress profiles for TS2 under strong
favourable pressure gradient conditions (SFPGC). δ0/R ≈ 0.05. See figure 13 for key.

the response of the turbulence production cycle (and bursting) to multiple strain rates
will be discussed.

4.1. Examination of equilibrium

A turbulent boundary layer becomes an equilibrium layer when the velocity profiles
are independent of the Reynolds number and the downstream distance s, if non-
dimensionalized using an appropriate velocity-defect law (Tennekes & Lumley 1972).
Strictly speaking, a given class of shear flows achieves some state of dynamical
equilibrium, in which the local energy input should approximately balance the local
loss (mostly through viscous dissipation), i.e.

−uv ∂Ū
∂y

+ ε ≈ 0. (9)

Equation (9) governs the transport of turbulent kinetic energy for homogeneous,
stationary turbulence (Hinze 1975).

The most common thickness parameter for equilibrium flows (White 1974) was
determined by Clauser and is defined as:

∆ =

∫ ∞
0

Ue − Ū
uτ

dy = δ∗λ, (10)

where λ =
√

2/cf . All velocity profiles can be scaled with y/∆ for constant Clauser
equilibrium shape factor given by:

G =
1

∆

∫ ∞
0

(
Ue − Ū
uτ

)2

dy. (11)

The departure and return to equilibrium can be described in the (G, β)-plane, where
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Figure 15. Clauser equilibrium parameter for (a) strong and (b) moderate convex curvature
(uncertainty of the order of plot symbol size).

β is the ratio of pressure to wall friction forces given by

β =

(
δ∗

τw

)(
dP

ds

)
. (12)

The (G, β)-plane shows the response of the boundary-layer physics as reflected through
the integral measure of equilibrium (G) to an applied strain rate, or input to the
boundary-layer physics, measured via β. It is expected that the response is not
necessarily instantaneous, but rather that there is a lag to the imposed strain rate,
or perhaps a lead as found in three-dimensional turbulent boundary layers near
separation. This is examined in terms of the relative change of angles of the principal
axes or strain rate and Reynolds shear stress in § 4.5.

Before examining the behaviour in the (G, β)-plane, the streamwise development
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Figure 16. Pressure gradient trajectories for (a) strong and (b) moderate convex curvature (un-
certainty of the order of plot symbol size). Arrows indicate direction of increasing streamwise
distance.

of the Clauser equilibrium parameter is shown in figure 15. It is obvious that the
TBL subjected to the adverse pressure gradient combined with the strong curvature
never reaches equilibrium. On the other hand, β tends to constant values as the flow
develops along the convex wall for all other cases indicating that the boundary layer
might reach a new state of local equilibrium, a criterion that must be satisfied to
employ certain turbulence models.

In figure 16, the (G, β) trajectories are shown for the different streamwise pressure
gradients in both test sections. For the strong curvature case, shown in figure 16(a), it
is clear that the trajectories for ZPG and APG move away from the initial equilibrium,
an effect that is more pronounced for the APG case. The initial measuring station
in all cases except ZPGC has the lowest value of β, so the trajectories begin at
the leftmost point on the trajectory curve and proceed in the direction indicated by



360 A. C. Schwarz, M. W. Plesniak and S. N. B. Murthy

30

25

20

15

10

5

0
1 10 100 1000

Flat plate, ZPG
DNS, Spalart (1988)
δ/RE0.10, ZPGC (15)
          0.10, SFPGC (15)
          0.05, ZPGC (15)
          0.05, SFPGC (15)

U+
c

y+
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the arrows. In the presence of ZPG and SFPG, the boundary layer reaches a new
equilibrium condition (with G ≈ 12.9 for ZPG and G ≈ 7.1 for SFPG). Note that the
symbols for the last two measuring stations overlap for these two cases.

It is perhaps surprising that for moderate curvature (TS2, figure 16b), G is rather far
from the initial equilibrium at the last measurement location (α ≈ 30◦) for both ZPG
cases, whereas in the presence of SFPG, the trajectory tends to return to the initial
equilibrium condition, in a nonlinear fashion. All of these cases begin their trajectory
with slightly positive values of β and proceed in the direction indicated by the arrows.
The same trend of return to equilibrium for the SFPG case can be observed for TS1.
Similar behaviour was reported by Bandyopadhyay & Ahmed (1993) on both walls
of an S-shaped duct. They pointed out that in the flat recovery section downstream of
curvature, the equilibrium values for G measured in the upstream flat section were not
achieved and termed this effect a hysteresis of the large eddies. They also emphasized
the importance not only of β, but also the effect of dβ/ds when modelling turbulent
boundary layers with streamwise pressure gradient. Note that dβ/ds accounts for the
application rate of the streamwise pressure gradient.

4.2. Multiple strain rate ratios

In order to illustrate the effect of different ratios of strain rates (radial to streamwise),
profiles of the mean streamwise velocity and the Reynolds stress components are com-
pared for different strengths of curvature (δ0/R ≈ 0.05 and δ0/R ≈ 0.10) combined
with zero and strong favourable pressure gradients. These profiles are shown for one
fixed streamwise location (α ≈ 15◦) in figures 17 and 18. The pressure gradient ratio,
Prat = (∂P/∂s)/(∂P/∂n), ranges from 0 to 1.2. It should be noted that the asymptotic
limit ∂P/∂n → 0 which causes Prat to become infinite is not physically meaningful
because the absence of curvature constitutes an entirely different flowfield, and the
usefulness of forming the ratio is unclear. The inner-normalized curvature parameters
(∆k+ = ∆Rν/uτ) were 6.20× 10−5 for TS1 and 3.54× 10−5 for TS2, respectively.

Another measure of the relative importance of curvature and streamwise pressure
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gradient effects is the ratio of ‘normal stress production’ and mean shear production
(Chebbi et al. 1998). The mean shear production is usually affected by curvature
(through its effect on uv) more than the direct production by the extra strain rate due
to curvature, U/R. This parameter is defined below:

F =
−(u2 − v2) ∂U/∂s

−uv ∂U/∂y . (13)

In the present experiments, typical magnitudes for this ratio for both ZPG cases
range from 2 to 3× 10−6 in the near-wall region to 3 to 4× 10−5 in the outer portion
of the TBL. Note that the values are non-zero owing to a slight non-zero pressure
gradient in the test section. On the other hand, for the SFPG cases, the ratio varies
from 1 to 2× 10−4 in the near-wall region and 1 to 2× 10−3. Here, the higher values
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different streamwise pressure gradient conditions at α ≈ 15◦.

for the ratio of normal to mean shear production are present when combining with
strong convex curvature through almost the entire boundary layer.

In figure 17, the inner-normalized mean streamwise velocity distributions are shown.
In all cases, the extent of the log-law region is reduced owing to the presence of the
radial pressure gradient, which also increases the wake component in the outer
portion of the TBL with respect to flat-plate results. The largest increase of the
wake component occurred for ZPG, especially for the moderate curvature case. This
behaviour is primarily attributed to the higher local acceleration near the onset of
curvature for the strong curvature (see figure 5) case causing a reduction in the
wake component. In addition, the streamwise distance is s − s0 ≈ 2.6δ0 for TS1 and
s − s0 ≈ 5.2δ0 for TS2, resulting in a longer development distance from the onset of
curvature for the case with moderate curvature and hence more time for the wake
component to develop. On the other hand, the strong FPG had the tendency to
oppose the wake-enhancing effect of the stabilizing curvature. This effect was more
pronounced in the moderate curvature case, whereas in the presence of strong convex
curvature, the reduction of the wake component relative to the corresponding ZPG
case was minimal. In each of these cases, inner variable scaling accounts for the effects
of multiple strain rates in the inner region, and the mean velocity profiles collapse.
The largest deviations are observed in the outer portion of the TBL, where inner
scaling is not expected to apply.

The streamwise and wall-normal r.m.s. velocities, along with the primary Reynolds
shear stress component, shown in figure 18, further illustrate the effects of the extra
strain rates. The streamwise r.m.s. velocity component data, shown in figures 18(a)
and 18(b), collapse well in the near-wall region (y+ 6 50), whereas the effects of
curvature combined with various streamwise pressure gradients are more pronounced
in the outer portion of the boundary layer. For both curvature cases, the streamwise
velocity fluctuation is reduced in the presence of favourable pressure gradients relative
to the ZPG cases, and this reduction is greater for the weaker convex curvature, where
the axial pressure gradient is ‘stronger’ relative to that in the strong curvature case.
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For both curvatures, the FPGs enhance the stabilizing effect of the convex curvature
in the sense that the Reynolds stresses are suppressed. For the wall-normal r.m.s.
component, these differences occur throughout the entire boundary layer and the
trends are consistent with the observations made for the streamwise component.

The various profiles of the primary Reynolds shear stress, −uv, are shown in
figure 18(c), where the effects of the different interacting pressure gradients are
obvious. The imposed favourable streamwise pressure gradient further reduces
−uv throughout most of the TBL, for both curvature cases. It is noteworthy that
the reduction in the outer portion (y+ > 50) of the boundary layer is greater for
the moderate curvature case when comparing ZPG and strong FPG. The effects
of the different strengths of curvature can also be observed in the outer portion of
the Reynolds stress profiles. Comparing both ZPG cases with different curvature, the
primary Reynolds shear stress is more suppressed for the stronger convex curvature,
indicating that the destruction of the energy-containing eddies is more advanced. As
mentioned before, this effect was demonstrated by Chiwanga & Ramaprian (1993),
who showed that the destruction of large-scale structures in the outer portion of the
TBL was due to the strong stabilizing convex curvature.

4.3. Production terms

In order to examine the effects of different combination of strain rates, i.e. different
magnitudes of the pressure gradient ratio on selected measured Reynolds stress terms,
the dominant production terms for the streamwise normal Reynolds stress and the
primary Reynolds shear stress were calculated. For a curved boundary layer, these
terms are:

Prod

(
u2

2

)
= −uv h∂Ū

∂y︸ ︷︷ ︸
Mean shear
production

+ uv
Ū

R︸ ︷︷ ︸
Curvature
production

− u2
∂Ū

∂s︸ ︷︷ ︸
Normal stress

production

− 2uv
Ū

R︸ ︷︷ ︸
Coordinate

rotation

, (14a)

Prod(−uv) = v2 h
∂Ū

∂y︸ ︷︷ ︸
Mean shear
production

− u2
Ū

R︸︷︷︸
Curvature
production

− [u2 − v2]
Ū

R︸ ︷︷ ︸
Coordinate

rotation

, (14b)

where h = 1 + y/R, and y is the wall-normal coordinate, often designated by n. The
production terms in the turbulent kinetic energy are as follows:

Prod

(
q2

2

)
= −uv h∂Ū

∂y︸ ︷︷ ︸
Mean shear
production

+ uv
Ū

R︸ ︷︷ ︸
Curvature
production

− [u2 − v2]
∂Ū

∂s︸ ︷︷ ︸
Normal stress

production

. (14c)

Note that the strain rates associated with the streamwise gradient affect the trans-
port equations through the terms labelled ‘normal stress production’. These terms
are obtained from the Reynolds stress transport equations given by Bradshaw (1973)
after applying continuity to replace dV/dy, as suggested by Baskaran et al. (1991).

The importance of anisotropy is obvious in the normal stress production of u2 and
turbulent kinetic energy (equations (14a) and (14c)).

Production terms for u2 and −uv are plotted in figure 19, using inner normalization.
They are compared with the measured flat plate data and the DNS data of Spalart
(1988). The profiles for the production of the streamwise normal Reynolds stress
(figure 19a) are identical to each other and to the flat plate data throughout the entire
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Figure 19. Production of (a) normal and (b) primary shear Reynolds stress for TS1 and TS2
under different streamwise pressure condtions (uncertainty of the order of plot symbol size in (a)).

boundary layer. Small differences are noticeable outside the log-law region, where
streamwise favourable pressure gradient augments the stabilizing effect of the convex
curvature, as already seen in the Reynolds stresses (figure 18). On the other hand, the
production for the primary Reynolds shear stress, shown in figure 19(b), is reduced in
the same portion of the boundary layer as that in which the primary Reynolds shear
stress is reduced.

Combined with the previous observations, the data indicate that the effects of the
applied extra rates-of-strain on the near-wall region of the turbulent boundary layer
are completely scaled by changes in uτ, and that the flow field is most obviously
affected in the outer portion of the boundary layer. It will be shown in § 4.4 that the
turbulence bursting period shows significant changes for the different cases discussed,
hence these results suggest that the bursting phenomenon is controlled by the dynam-
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ics of the entire boundary layer. Furthermore, they imply that the production cycle
mechanisms are closely coupled with the applied strain rates.

The variation of the flux Richardson number, which gives additional insight into
streamline curvature effects on a turbulent boundary layer and its implications on
the structural changes inside the TBL are shown in figure 20. In this figure, the flux
Richardson number is shown for both curvature cases subject to ZPGC and SFPGC
at α ≈ 15◦. For all profiles shown, Rifl exceeds its critical value of 0.05 (Townsend
1976) at y+ ≈ 100, the upper limit of the log-law region. This supports our previous
statement that the outer portion of the TBL was more strongly affected by the
extra strain rates. The relative increase of the flux Richardson number for the strong
convex curvature case compared to the moderate curvature case is consistent with the
elevated stabilizing effect on the TBL in the presence of stronger convex curvature.
On the other hand, different strengths of favourable pressure gradients yield a smaller
increase in Rifl . Consequently, it appears that the strong radial pressure gradient due
to wall curvature is the dominant pressure gradient in this flow field.

4.4. Burst frequencies

In figure 21, the mean burst frequency normalized with inner variables (f̄+
B = f̄Bν/u

2
τ)

is shown for both curvature cases as a function of the streamwise distance along the
convex wall for ZPG, FPG, and APG. For the strong curvature case (figure 21a),
the burst frequency was reduced immediately downstream of the onset of curvature,
and even further reduced in the presence of favourable pressure gradients. On the
other hand, it was increased for the adverse pressure gradient, indicating a more
frequent occurrence of these events. The same trends were also observed for mixed
and outer normalization of the burst frequency (Schwarz & Plesniak 1996a). The
(inner normalized) burst frequency was 18% smaller at α ≈ 15◦ for the strongest
FPG case (SFPG) compared to the ZPG case. In addition, the duration of ejections
became shorter in the presence of SFPG. The (inner normalized) duration times for
ejections at four different stations for all streamwise pressure gradients are given in
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Figure 21. Streamwise distribution of inner normalized burst frequency for (a) TS1 and
(b) TS2 under different streamwise pressure conditions.

table 4, which clearly shows that the duration decreases in the presence of favourable
streamwise pressure gradients. The values shown in table 4 correspond to a particular
threshold value of H = 0.2, but the trends are the same for the entire threshold-
independent range. Thus, because bursts are less frequent and of shorter duration
downstream of the initial region (α > 20◦), FPG in the convex turbulent boundary
layer is associated with a suppression of the turbulence production cycle. Although
the difference in the (inner-normalized) burst frequency decreased with downstream
distance, the combination of the strong curvature with strong FPG resulted in an
increased stabilization of the turbulent boundary layer throughout the measurement
domain (28% reduction of burst frequency at 55◦).

On the other hand, the interaction of the strong convex curvature with APG had
the opposite effect. Especially in the initial curved wall region (but even up to α ≈ 35◦),
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(a) Case α ≈ 15◦ α ≈ 20◦ α ≈ 35◦ α ≈ 55◦

APG 1.45 1.70 1.71 1.78
ZPG 1.95 2.17 2.33 2.13
FPG 2.05 2.02 2.18 2.13
SFPG 1.68 1.88 2.04 2.07

(b) Case α ≈ 0◦ α ≈ 10◦ α ≈ 15◦ α ≈ 20◦ α ≈ 30◦

ZPGU 2.43 2.12 1.94 1.83 1.49
ZPGC 2.13 1.87 1.93 1.83 1.75
SFPG 2.16 1.64 1.73 2.02 1.56

Table 4. Inner normalized ejection duration ∆τ+
E = ∆τEu

2
τ/ν for different streamwise pressure

gradients (H = 0.2) with (a) δ0/R ≈ 0.10, (b) δ0/R ≈ 0.05.

the burst frequency was elevated relative to the ZPG values. In any case, the turbulent
burst frequency is low in the initial region, immediately downstream of the onset of
curvature, which is attributed to the sudden change in surface curvature. However,
in the presence of APG, the ejection duration is reduced compared to all other cases
along the entire test surface, as shown in table 4(a). This behaviour can be linked to
the initially strong application rate of the streamwise strain rate (figure 5), causing a
reduction in the duration of uv2 events, accompanied by a more frequent occurrence
of the bursting events. These results imply that not only the magnitude, but also the
rate of application of the strain rate, dictates the state of the turbulence throughout
the measurement domain. In summary, APG is associated with increased turbulence
production, which coincides with an increase of the primary Reynolds shear stress,
despite the fact that the ejection duration of the detected events is reduced.

In figure 21(b), the burst frequencies for the moderate curvature case are shown.
Also included is the value for the upstream flat-plate reference station. In this case,
data are shown for three different streamwise pressure gradient distributions, two
zero (compensated and uncompensated) and strong favourable pressure gradient
(SFPG). The uncompensated zero pressure gradient (ZPGU) exhibits a stronger
local acceleration at the onset of curvature compared to the compensated case
(ZPGC), because the flexible wall opposite the measurement wall was not corrected
to counteract the initial acceleration. As in the strong curvature case, the burst
frequency is reduced near the onset of curvature owing to the stabilizing nature of
the local favourable pressure gradient. The burst frequency increases monotonically
downstream for both ZPGs. On the other hand, a dramatic decrease in fB occurs
initially in the presence of the SFPG, reaching a minimum at α ≈ 15◦. This trend is
completely opposite to that observed for the strong curvature case, where the burst
frequency increased monotonically after reaching a minimum value immediately
downstream of the onset of curvature. In comparison with figure 21(a), it is evident
that the turbulence production cycle experiences a higher suppression when SFPG
and moderate curvature are combined. Recall that the ratio of the streamwise (SFPG)
to radial pressure gradient Prat is 1.2 for the moderate and 0.6 for the strong convex
curvature.

The inner-normalized duration of ejection events for the moderate curvature data,
shown in table 4, generally support the bursting frequency trends. In general, the
ejection duration is shorter in the presence of SFPG than for either ZPG case. This
indicates that the strong favourable pressure gradient has a stabilizing effect on the
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bursting period for TS1 and TS2.

turbulent boundary layer when combined with a more moderate convex curvature
and it is in good agreement with the Reynolds stress measurements (figure 18).

4.5. Effects of combined strain rates

To further examine the effect of combined strain rates on the turbulence structure, we
attempted to identify correlations between a standard integral parameter (i.e. wall-
shear stress or skin-friction coefficient) and the bursting period. These parameters
were chosen because of the relevance of the wall-shear stress and the importance of the
frequency of the main Reynolds-stress-producing event for modelling considerations.
The burst period using inner (figure 22a) and outer normalization (figure 22b) as a
function of the skin-friction coefficient is shown for all applied streamwise pressure
gradients and curvatures. The main observation that can be drawn from this figure
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is the monotonically increasing bursting period (reduction of the bursting event fre-
quency) with increasing skin-friction. This result implies that the normalized bursting
period is simply related to the skin-friction coefficient, independent of whether the
TBL develops over a flat plate with ZPG or whether it is exposed to multiple extra
rates-of-strain.

In figure 23, the principal axes for the Reynolds stress tensor are shown for the
data sets discussed in § 4.2 to illustrate the effect of different strain rate ratios on the
structural features of the boundary layer. The distribution of the principal axes of
the strain rate tensor are omitted here, owing to a high ‘noise’ level, which results after
differentiating the velocity data. However, for a plane constant shear, the principal
axis is αSR = 45◦, and our results are in that neighbourhood (Schwarz 1998). For
non-homogeneous turbulence, the principal axes of the Reynolds stress tensor are not
aligned with those of the strain rate tensor (Gence & Mathieu 1979). The angle of
the principal axes of the Reynolds stresses can be interpreted as an indirect measure
for how well the velocity fluctuations in the streamwise and wall-normal direction are
correlated with each other, and also the degree to which the flow is locally isotropic,
i.e. u2 − v2 ⇒ 0. Both trends would increase the magnitude of the Reynolds stress
principal axes. The Reynolds stress principal axes angle, αReS shown in figure 23 is
unaffected by the interacting strain rates inside the log-law region (y+ 6 100). In the
outer portion of the TBL, the ZPGC case with strong convex curvature (TS1) shows
the largest reduction of αReS relative to flat-plate values. This behaviour is consistent
with the highest local application rate of newly introduced strain rates especially
in the streamwise direction (figure 5). It can be expected that the Reynolds stress
principal axes is not aligned with the strain rate tensor’s principal axes, especially
in the outer portion of the boundary layer, which is a violation of the Boussinesq
approximation. One of the major shortcomings of standard turbulence models (e.g.
k–ε model) applied to the current flow is the use of an isotropic scalar eddy viscosity
even though the turbulence has strong non-isotropic features.

To further demonstrate the behaviour of αReS its streamwise evolution immediately
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Figure 24. Angle of the Reynolds stress tensor principal axes for TBL with (a) compensated zero
and (b) strong favourable streamwise pressure gradient. δ/R ≈ 0.05.

downstream of the onset of curvature for ZPGC and SFPGC in TS2 is shown
in figure 24. Here, the angle of the principal Reynolds shear stress tensor axes
is immediately suppressed for the ZPGC case (figure 24a), but remains essentially
unchanged for the SFPGC case (figure 24b). The same trend for a zero-pressure-
gradient turbulent boundary layer forming over a convex wall was predicted by
Hong & Murthy (1986b), who developed the large eddy interaction model (LEIM),
a finite velocity transport approach which is an alternative to the more frequently
used simple gradient diffusion hypothesis. They found that the angle of the principal
axes of the stress decreased with convex curvature. As before, the TBL for the ZPGC
case is exposed to a rapidly changing application rate of streamwise acceleration or
deceleration causing αReS to be reduced. These results further demonstrate that the
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Figure 25. Total strain parameter for TBL with (a) compensated zero and (b) strong favourable
streamwise pressure gradient for TS2. δ/R ≈ 0.05.

rate of application of the newly applied strain rates is at least as important as the
magnitude of the strain rates itself.

In figure 25, the estimated total strain parameter, which can be used to determine
whether the flow should be treated as a rapidly distorting flow, is shown as a function
of the inner-normalized wall-normal coordinate for the initial region in TS2 under
ZPGC (figure 25a) and SFPGC (figure 25b) conditions. The profiles for the flat
plate and the DNS data sets using two-dimensional (2D) and three-dimensional (3D)
representations of turbulent kinetic energy, k are included for comparison. There is
good agreement between all data sets for the inner near-wall region, as seen previously.
Outside the log-law region (y+ > 100), the total strain parameter becomes elevated as
soon as the flow enters the curved portion of the test section. This trend is consistent
for all of the applied streamwise strain rates.
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Figure 26. Streamwise variation of the total strain parameter for (a) TS2 and (b) TS1 and TS2
combined in the outer portion of the TBL.

In order to gain a better understanding, the streamwise variation of the total strain
parameter in the outer portion of the boundary layer is examined (y/δ ≈ 0.4 as
suggested by Sreenivasan 1985). Figure 26 shows the streamwise development under
different conditions, i.e. moderate convex curvature (TS2) with different streamwise
pressure gradient in figure 26(a), and both curvature cases with zero, favourable and
adverse (only for TS1) streamwise pressure gradients in figure 26(b). The trends are
striking. For both curvature cases, the total strain parameter is elevated immediately
downstream of the onset of curvature, relative to the flat-plate values. Note that
the equilibrium value for homogeneous plane shear flow is approximately 4.5 (see
Sreenivasan 1985). However, this value is magnified by approximately a factor of 4
for the strong curvature case. It is still questionable whether or not the flow reaches
a new, higher total strain parameter (approximately 5.5 for TS2 and 13.0 for TS1),
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especially in the case of strong convex curvature. This information would be valuable
in assessing the modified turbulence structure for curved boundary-layer flows.

The following interpretation of these results is proposed. The nonlinear cascade
process describes the interaction of the eddies of different size, where it is assumed
that the large energy-containing eddies lose their energy to somewhat smaller eddies,
which in turn lose their energy to still smaller eddies all the way down to the smallest
scale eddies, which finally dissipate the energy by viscous interaction. It is this last
stage that is described by the isotropic dissipation rate ε, which is an integral part of a
variety of turbulent models (see van den Berg 1984). However, the rate of dissipation
is determined by the first few stages of the cascade process, i.e. by the large eddies.
In addition, the effectiveness at which the large eddies extract energy from the mean
shear flow is believed to be linked to how well the principal axes of vorticity are
aligned with those of the mean strain rate (Tennekes & Lumley 1972). Any mechanism
that would suppress or even inhibit the initial stage in the nonlinear cascade process,
or any mechanism that would affect the dynamic interaction between the turbulence
and the mean flow, would instantly result in a variation of ε, which would cause the
total strain parameter to change.

In a direct numerical simulation (DNS) of an elliptical shear flow by Blaisdell
& Shariff (1996), which combines a homogeneous turbulent flow with the effects of
solid-body rotation and strain, it was found that the nonlinear cascade process was
suppressed for early times. This effect was enhanced for stronger rotation, whereas it
recovered as the flow field developed further in time. The relationship to the present
results is as follows. The newly applied extra rates of strain at the onset of curvature
have a significant effect on the turbulence structure of the developing boundary layer.
Immediately downstream of the onset of curvature, the turbulence production cycle
is inhibited and the total strain parameter is elevated. Equation (15) shows how the
total strain parameter is related to the TKE and the turbulence dissipation rate:

βTSt ∝
1
2
q2

ε

∂Ū

∂y
. (15)

Since the data show that neither the TKE nor the mean shear rate are significantly
altered when the additional strains are imposed, the increase in βTSt results from a
reduction of the turbulence dissipation rate ε. This implies that the nonlinear cascade
transfer process is inhibited or the dynamic interaction between the turbulence and
the mean flow is affected by the sudden introduction of extra strain rates. Detailed
spectral measurements are necessary to examine these mechanisms further.

5. Summary and conclusions
Experiments have been carried out in a low-speed water tunnel to demonstrate

the response of a turbulent boundary layer to the application of multiple pressure
gradients. Constant pressure gradient boundary layers were established downstream
of the onset of curvature for two different curved test sections (strong and moderate
curvature).

The geometric configuration studied was representative of relatively low-aspect-
ratio turbine vane passages. The emphasis of the study was on the near-wall inner
layer of the convex wall boundary layer subjected to various pressure gradients. The
initial region of curvature, where the turbulence is not in equilibrium, was measured
extensively, and the degree of relaxation back to equilibrium was examined. Novel
near-wall data as well as bursting information are reported.



374 A. C. Schwarz, M. W. Plesniak and S. N. B. Murthy

The response of the turbulent boundary layer to multiple, combined strain rates
(here radial and streamwise pressure gradients) was reflected in several different
measured and deduced quantities. It is evident that both extra rates-of-strain have
an effect on the mean and fluctuating features of the flow field, i.e. the skin-friction
coefficient experienced the counteracting effect of the favourable pressure gradient
to the radial strain. This behaviour and the response of other TBL quantities (i.e.
strength of wake, Reynolds stresses, bursting period, equilibrium considerations) to
the applied strains clearly indicate that the applied pressure gradients interact with
each other. The interaction is not a simple one that is linearly superposable, but
rather there is a mutual nonlinear interaction, which produces some net effect.

It was confirmed that convex curvature for zero pressure gradient, causes a dra-
matic reduction of the primary Reynolds shear stress in the outer portion of the
boundary layer compared to turbulent flow over a flat plate, which can be attributed
to the destruction of the large eddies owing to convex curvature. Favourable pres-
sure gradients augmented the stabilizing curvature effects, whereas adverse pressure
gradient counteracted that trend.

The convex turbulent boundary layer reaches a state of similarity at approximately
8δ0 downstream of the onset of curvature. Favourable pressure gradient, when in-
teracting with convex curvature, opposes the wake-enhancing effect of the convex
curvature but augments its stabilizing effect on the turbulent stresses and transport.
On the other hand, adverse pressure gradient enhances the wake strength but it
counteracts the stabilizing effect of convex curvature.

As the flow develops downstream of the onset of curvature, there is an immedi-
ate response of the turbulence momentum transport, i.e. reduction of the primary
Reynolds shear stress, especially in the outer region of the boundary layer (y+ > 70).
The higher strain rate ratio (strong FPG with moderate curvature, TS2) has an
increased stabilizing effect on the turbulent boundary layer.

The turbulence production cycle is suppressed at the onset of curvature in all
cases owing to a local acceleration of the boundary layer. In the case of SFPG
interacting with moderate convex curvature (higher strain rate ratio, Prat = 1.2 for
moderate curvature, compared to 0.6 for strong convex curvature), the production
cycle becomes suppressed even more, as reflected in an increase of the burst period.
The burst measurements also emphasize the importance of the application rate of
the newly applied strain rate. This feature, along with the strength and the relative
magnitude of the interacting strains, must be considered in an attempt to develop a
reliable model for this type of complex flow field. Along with an abrupt suppression
of the turbulence production cycle, the total strain parameter, which is a measure
for the average life-time of the large, energy-containing eddies, increases immediately
after introduction of convex curvature. Because the production of turbulence energy
occurs mainly in the near-wall region, and the large eddies exist in the outer layer,
it is concluded that the sudden introduction of multiple extra strain rates affects the
turbulence structure of the entire boundary layer.

Perhaps most significantly, we have found that the response of a turbulent shear
flow to more than one additional rate of strain is dependent on the rate of application
of the different strain rates, and this is evident in the effect on the turbulence energy
redistribution. The apparent dominance of one applied rate of strain over another (in
a given context) is also dependent on the rate of application of the two strain rates,
as well as their magnitudes. The results presented in § 4 clearly show the nonlinear
nature of combining rates of strain, and their net effect is not predictable from any
simple stress–strain rate law. Even the smallest second additional rate of strain (and
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its application rate) has a large effect in the vicinity of the application, where the
‘vicinity’ in question may not be small.

Further study is required to understand precisely how the strain rates combine with
respect to any turbulence feature and the reason for the dominance of one over the
other.

This work was sponsored by the Air Force Office of Scientific Research, Air
Force Material Command, USAF, under grant number F 49620-93-1-0003. The US
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
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